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Chapter 1

Transport in helical fluid

turbulence1
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Kinetic helicity (hereafter helicity) is defined by the correlation between

the velocity and the flow-aligned vorticity. Helicity, as well as energy, is

an inviscid invariant of the hydrodynamic equations. In contrast to en-

ergy, a measure of the turbulent intensity, turbulent helicity, representing

right- and left-handed twist associated with a fluctuating motion, provides

a measure of the structural or topological property of the fluctuation. The

helicity effect on the turbulent transport can be analytically obtained in the

framework of the multiple-scale renormalized perturbation expansion the-

ory through the inclusion of the non-reflectionally-symmetric part for the

lowest-order (homogeneous and isotropic) velocity correlation. The physical

significance of the helicity-related contribution to the momentum transport

is explained. By utilizing the analytical expression of the Reynolds stress,

a turbulence model with helicity effect incorporated (helicity model) is

1Visiting researcher at Nordic Institute for Theoretical Physics (NORDITA).
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constructed. This helicity model is applied to a swirling flow to show its

validity in describing the prominent properties of the flow. In addition to

the transport suppression, inhomogeneous helicity coupled with a rotation

can induce a large-scale flow. The results of direct numerical simulations

(DNSs) confirming the global flow generation by helicity will be also re-

viewed, followed by several possible applications in geo- and astro-physical

flow phenomena.

Keywords: Turbulence, Helicity, Transport suppression, Global field gen-

eration

1.1. Introduction

Kinetic helicity is a measure of broken mirror-symmetry and represents the

geometrical and topological properties of fluid turbulence. The presence of

helicity alters the dynamical and statistical properties of turbulence. Beyond

fluid dynamics, helicity plays a role in diverse areas of research including DNA

and bio-chemistry, ventral nodal flow in generation of left-right asymmetry,

vortex-entanglement in quantum fluids, chirality in neutrino left-right skewness

asymmetry in the universe, zonal flow generation in fusion plasma devices etc.

The first discussions on the importance of helicity were likely to be evoked

in the context of magnetic-field generation: dynamo. If the fluid motion is he-

lical, magnetic field frozen into the fluid can be also twisted. Then, the mean

electric-current density configuration parallel or antiparallel to the original

mean magnetic flux tube can be generated. Assuming a cyclonic fluid motion,

which is related to the cyclone and anticyclone observed in the atmosphere,

in small scales, Parker [1955] proposed a mechanism in which a azimuthal

or toroidal magnetic field is deformed to become a dipole or poloidal mag-
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netic field and vice versa. This is the α dynamo which is considered to be

one of the most relevant processes in the stellar migratory dynamo cycle. In

this dynamo, helicity in turbulence is an essential ingredient. An inhomoge-

neous velocity fluctuation u′ along the large-scale magnetic field B induces an

magnetic-field fluctuation b′. In the presence of kinetic helicity in turbulence,

〈u′ · (∇× u′)〉, an electromotive force component, 〈u′ × b′〉, parallel or anti-

parallel to the large-scale magnetic field can be induced depending on the sign

of turbulent helicity (〈· · ·〉: ensemble average). This gives marked contrast with

the turbulent energy, which always induces an electromotive force anti-parallel

to the large-scale electric-current density, leading to the enhancement of mag-

netic diffusivity due to turbulence. In the presence of the current helicity in

turbulence, 〈b′ · (∇× b′)〉, mediated by a part of the fluctuating Lorentz force

(∇ × b′) × B, an electromotive force can be induced in the direction parallel

or antiparallel to the large-scale magnetic field B. For the kinetic-helicity ef-

fect in dynamo as well as the other helicities effects, the reader is referred to

textbooks and review papers on dynamos [Moffatt, 1978, Parker, 1979, Krause

& Rädler, 1980, Brandenburg & Subramanian, 2005, Yokoi, 2013, Moffatt &

Dormy, 2019, Tobias, 2021].

Since helicity is a measure of broken mirror-symmetry, a prerequisite for

non-zero helicity is an element that breaks mirror-symmetry. Rotation is one of

such elements that causes breakage of mirror-symmetry. As we see later in the

transport equation of turbulent helicity (§ 4.2), rotation coupled with inhomo-

geneity provides turbulence with a finite helicity through the flux across the

boundary. In geophysical and astrophysical flows, rotation and density stratifi-

cation are basic ingredients of the system. A strong stratification (low Froude

number Fr = U/(NBVh) . 1 with U being the horizontal velocity scale, h the
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vertical length scale, and NBV the Brunt–Väisälä frequency) causes the fluid

to be deflected almost purely horizontally, and flow becomes two-dimensional.

Even with this two-dimensionality in the large-scale flow structure, small-scale

turbulent motions are usually more complex and three-dimensional. For ex-

ample, generation of helicity due to rotation and stratification is a concept

dating back to Steenbeck, Krause & Rädler [1966] and to Hide [1989] who

demonstrated how it could occur. In the presence of inhomogeneity along the

rotation axis, turbulence in a stratified fluid can be helical [Marino, Rosenberg

& Pouquet, 2013, Marino, et al., 2013].

Related to the dimensionality of turbulence, another interesting point is the

helicity effect in two-dimensional with three-component configuration, 2D3C.

In the presence of a strong rotation, depending on the boundary conditions, the

flow becomes quasi 2D3C state, where the helicity invariants are still present.

From the viewpoint of the helicity effect, which we present in § 1.3.3, helicity

inhomogeneity in space is essential. Inhomogeneity of helicity cannot be present

in the third direction perpendicular to the 2D or horizontal plane in the 2D3C

configuration. On the other hand, helicity inhomogeneity in the horizontal

plane is possible. This horizontally inhomogeneous helicity coupled with the

perpendicular mean absolute vorticity (associated with the rotation and non-

uniform horizontal flows) may contribute to the horizontal momentum transfer

through the Reynolds stress. These features of the 2D3C configuration would

be interesting subject to explore in the future as well as the cascade direction

and scalings of energy and helicity associated with the constraints involving

invariants other than energy.

In the fundamental theoretical studies of turbulence, how and how much

helicity influences energy cascade and dissipation have been often investigated
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using homogeneous isotropic turbulence (HIT). By constructing statistical me-

chanics for the truncated system of turbulence equation, Kraichnan [1973] pos-

tulated a cascade of helicity towards the small scales. Since the classical work

by André & Lesieure [1977], the influence of helicity on the evolution of tur-

bulent spectra has been examined. In addition, the relationship between the

high helicity region and low dissipation region in turbulence has been studied

by Rogers & Moin [1987] in several turbulent flow geometries. Recent progress

in our understanding of helical process in fluid turbulence has been made in

various ways. Introducing the helical decomposition of the velocity, Waleffe

[1993] argued energy and helicity cascades with two classes of triad interaction

of turbulence depending on whether the longest legs of triad are helical modes

of the same or opposite sign. Using direct numerical simulation (DNS) of HIT

3D turbulence, it was shown in Chen, Chen, & Eyink [2003] that the strong

fluxes of positive and negative helical modes cancel with each other at high

wave numbers, leading to a return to full isotropy at small scale. By examining

the sub-categories of non-linear interaction, it has been found that the different

subsets of interaction conserve the different combinations of the turbulent en-

ergy and helicity evolutions, leading to the possibility of partial inverse cascade

of the energy of helical turbulence [Biferale, Musacchio & Toschi, 2012, Alex-

axis & Biferale, 2018]. By using DNSs of HIT, Taylor–Green (TG) flow with

laboratory experiments of mirror-symmetric HIT and of chiral von Kármán

flows, the relationship between the linking number of tracer trajectories and

helicity has been established. This paves the way for experimentally measuring

helicity on a firm mathematical basis [Angriman, et al., 2021]. An outline of

the developments in homogeneous turbulence studies are briefly reviewed in

Pouquet & Yokoi [2022].
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In this chapter, we will not deal with the problem of cascade and dissipa-

tion in helical homogeneous turbulence, rather we focus our attention on the

transport in helical inhomogeneous turbulence. What is the role of turbulent

kinetic helicity in the dynamics of large-scale or mean velocity and vorticity?

We present how to theoretically tackle this problem in inhomogeneous turbu-

lence.

From the viewpoint of transport, the primary effect of turbulence is to

drastically enhance the effective transport. The eddy viscosity, eddy diffusivity,

turbulent resistivity, etc. are the representative transport enhancement effects,

which are determined by the intensity and timescale of turbulence. At the same

time, in some cases where symmetry is broken in turbulence, the possibility

of suppressing the effective transport arises also due to turbulence. In this

suppression process, quantity related to the breakage of symmetry plays a key

role in counterbalancing the transport enhancement. As will be shown in the

later sections, helicity is expected to play a crucial role in transport suppression

in non-mirror-symmetric fluid turbulence.

In contrast to homogeneous turbulence, where energy injection by external

forcing is indispensable for sustaining turbulence, in inhomogeneous turbu-

lence, turbulent energy and helicity are naturally provided by the system itself

through the production mechanisms of these quantities arising from the large-

scale inhomogeneous fields, such as mean velocity shear, vorticity, temperature

gradient, etc., and the fluxes from the boundaries. Mean field are determined by

turbulence through the turbulent transport coefficients, and turbulence fields

are determined by the production and transport rates directly linked to the

large-scale inhomogeneities. In order to treat this nonlinear mean–turbulence

interaction in a consistent manner, we have to simultaneously consider and
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solve the mean and turbulence fields. Direct numerical simulations (DNSs)

of real inhomogeneous turbulence at realistic parameters for the geophysical

and astrophysical phenomena with complex geometry and boundaries are just

impossible. In this situation, turbulence modeling approach provides a very

powerful tool for analyzing the real turbulent flows. We deal with how to in-

corporate such suppression effects of helicity into turbulence modeling.

The organization of this chapter is as follows. First in § 1.2, we present the

definitions and basic properties of kinetic helicity. In § 1.3, how to theoretically

treat helicity effect in inhomogeneous turbulence at very high Reynolds num-

ber will be shown. One of the key procedures in the theoretical formulation

for helical turbulence is to adopt the non-mirror-symmetric part, as well as

the energy-related mirror-symmetric part, for the homogeneous isotropic two-

mode two-time correlation function of a fluctuating field. In § 1.4, utilizing the

analytical results for the relevant turbulent fluxes obtained by the theoretical

formulation, a turbulence model for helical turbulent flows is constructed. In

the model, in addition to the eddy-viscosity which contributes to the destruc-

tion of large-scale structures, the helicity-related transport coefficient shows up.

This helicity effect is expected to contribute to sustainment and generation of

large-scale flow structures. In § 1.5, the helicity turbulence model is applied to

a physically interesting and practically important flow configuration: turbulent

swirling flow. It will be shown that the helicity model successfully reproduces

prominent features of turbulent swirling flow that cannot be reproduced by

the standard eddy-viscosity turbulence model. In § 1.6, global flow genera-

tion due to inhomogeneous turbulent helicity is discussed with theoretical and

numerical analyses. In § 1.7 we summarize our arguments with conclusion.
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Figure 1.1: Helicity as the velocity–vorticity correlation. (a) Positive helicity, (b)

negative helicity.

1.2. Helicity: definition and properties

Helicity possesses several distinctive mathematical and interesting physical

properties. After presenting the definition of helicity, these several character-

istic properties of helicity will be presented. They include helicity as pseudo-

scalar and conserved quantity, geometrical and topological interpretation of

helicity, role of helicity in cascade suppression.

(A) Definition. Helicity is defined as the volume integral of the inner product

of the velocity and its curl (vorticity) as

H =

∫

V
u · (∇× u) dV. (1.1)

Helicity density (hereafter, simply denoted as helicity) is defined by the inner

product of the velocity u and the vorticity ω(= ∇×u), u·ω. A positive helicity

(u · ω > 0) represents a right-handed twist or screw of a fluid element along

its motion u. On the other hand, a negative helicity (u ·ω < 0) represents the

left-handed twist or screw (Figure 1.1).

It is worth noting that fully helical (Beltrami) situations such as Figure 1.1
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are unstable. They are fully helical, but eventually become unstable and return

to isotropy in the small scales. This means that the constraint of helicity should

be less stringent at small scale. Related to this point, the scale dependence of

the relative importance of helicity effect in the Reynolds stress will be discussed

at the end of § 1.3.

(B) Pseudo-scalar. On the basis of parity property, vector quantities are

divided into two categories. One is the polar or pure vector, which changes

its sign under inversion of coordinate system. The other is the axial or pseudo

vector, which does not change its sign under inversion. For the sake of simplicity

avoiding complex argument on the transformation between the left- and right-

handed system, we just adopt the argument in terms of “inversion” here.2

Under this categorization, the velocity u is a polar vector while the vorticity

ω(= ∇×u) is an axial vector. It follows that the helicity u ·ω, defined by the

inner product of polar and axial vectors, is a scalar that changes its sign under

inversion of coordinate system. Such a scalar is called pseudo-scalar whereas a

2Transformation of a vector f = {fi} is written as f ′

i = |A|Aijfj , where Aij is the trans-

formation matrix and |A| is its determinant. For pseudo-vectors |A| = −1. A reflection can

be written in terms of combination of inversion I and rotation C. For instance, a reflection or

mirror in the xy plane represented by Σ =









1 0 0

0 1 0

0 0 −1









can be constructed by combina-

tion of inversion represented by inversion I =









−1 0 0

0 −1 0

0 0 −1









and the π-angle rotation

about the z axis C =









−1 0 0

0 −1 0

0 0 1









as Σ = IC. Since for all rotation, the determinant

|C| is always +1 (|C| = +1), the determinant of the reflection, |Σ|, is represented by that of

the inversion, |I|. In this sense, we can argue non-mirror-symmetry in terms of inversion.
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scalar that does not change its sign under inversion is called pure-scalar. The

statistical average of a pseudo-scalar vanishes in mirror-symmetric system. This

can be shown as follows. In mirror-symmetric system, by definition of mirror-

symmetry, any statistical quantity f(x) satisfies f(x) = f(−x) under inversion

of coordinate system: x → −x. At the same time, by the definition, a pseudo-

scalar changes its sign f(x) = −f(−x) under inversion. As this consequence,

a pseudo-scalar statistical quantity f(x) satisfies f(x) = −f(−x) = −f(x),

leading to f(x) = 0: The pseudo-scalar statistical quantity vanishes in mirror-

symmetric system. Conversely, a finite or non-zero pseudo-scalar implies that

the mirror- or reflectional symmetry of the system is broken. Since the helicity

is a pseudo-scalar, the helicity serves itself as a measure for broken mirror-

symmetry.

(C) Conserved quantity. One of the prominent characteristics of helicity is

that helicity, as well as energy, is an inviscid invariant of the system of fluid

dynamics. Namely, the helicity is a conserved quantity in the limit of vanishing

viscosity.

The equations that govern the velocity u in an incompressible fluid is

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u (1.2)

or equivalently,

∂u

∂t
= u× ω −∇

(

p+
u2

2

)

+ ν∇2u, (1.3)

and the solenoidal condition of u as

∇ · u = 0, (1.4)
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where p is the pressure normalized by a constant density ρ, and ν is the kine-

matic viscosity. Associated with these equations, the vorticity ω(= ∇ × u)

obeys

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ν∇2ω (1.5)

or equivalently in the rotational form

∂ω

∂t
= ∇× (u× ω) + ν∇2ω, (1.6)

and the solenoidal condition of ω as

∇ · ω = 0. (1.7)

It follows from Eqs. (1.2)-(1.7) that the governing equation of helicity is given

by

d

dt
u · ω ≡

(
∂

∂t
+ u · ∇

)

u · ω

= ∇ ·

[(
1

2
u2 − p

)

ω + ν∇(u · ω)

]

− 2ν
∂uj
∂xi

∂ωj

∂xi
. (1.8)

Integrating Eq. (1.8) over the volume V and putting ν = 0,3 we obtain

d

dt

∫

V
u · ω dV =

∫

S

[(
1

2
u2 − p

)

ω

]

· n dS. (1.9)

This means that in the absence of in- or out-flux through the integral surface

3Of course, putting ν = 0 is not permissible in treating turbulent flows since viscosity

plays an essential role in turbulent dissipation. For example, the kinetic helicity decays on

a turbulent time scale regardless of the nature of the forcing and the value of the Reynolds

number [Brandenburg & Petrosyan, 2012].
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Figure 1.2: Topological interpretation of helicity. (a) Linked vortex tubes (Hopf

link), (b) constraint on relaxation due to helicity invariance.

S, the (total) helicity
∫

V u · ω dV does not vary along the fluid motion u.

Namely, the helicity is an inviscid invariant of the fluid motion, as is same as

energy (per unit mass)
∫

V u2/2 dV is. This fact strongly suggests that helicity

as well as energy is a quantity of fundamental importance in fluid dynamics.

(D) Geometrical and topological interpretation. Helicity and its prop-

erties can be interpreted and explained in terms of topology [Moffatt, 1978,

1992, Moffatt & Dormy, 2019]. Helicity corresponds to the topological proper-

ties of flows through knots, links, twists, and writhes of the vortex tubes. As a

simplest case for links, we consider the Hopf link of two vortex tubes, Φ1 and

Φ2, which are respectively along the closed loops C1 and C2. They are linked

each other as in Figure 1.2(a). The surface areas spanned by the closed loops

C1 and C2 are given as S1(C1) and S2(C2), respectively. The volumes of the

vortex-tube regions are denoted as V1 and V2.

In case that the vorticity is localized only in the regions of V1 and V2, the

integral of the helicity over the whole space volume V can be expressed by the
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sum of the volume integrals over V1 and V2 as

∫

V
u · ω dV =

∫

V1

u · ω dV1 +

∫

V2

u · ω dV2. (1.10)

Assuming that the magnitude of the vorticity ω is uniform across the cross

section of the vortex-tube region V1, we have

∫

V1

u · ω dV1 = Φ1

∮

C1

u · ds = Φ1

∫

S1(C1)
(∇× u) · n1 dS1

= Φ1

∫

S1(C1)
ω2 · n1 dS1 = Φ1Φ2. (1.11)

Here use has been made of the assumption that the vorticity is localized so

that the vorticity threading its way through the surface S1(C1) is solely ω2.

With a similar calculation on the region V2, the total helicity reads

∫

V
u · ω dV = 2Φ1Φ2. (1.12)

In general case of the number of links being N (N : winding number), the total

helicity is expressed as

∫

V
u · ω dV = 2NΦ1Φ2. (1.13)

This shows that helicity represents the link of vortex tubes.

Helicity conservation in the inviscid case corresponds to the fact that the

vortex tube is immortal (neither arising nor ceasing) and the linking number

of the vortex tubes is invariant in the case of vanishing viscosity (ν = 0).

Due to the (ω · ∇)u term in the vorticity equation (1.5), the vorticity is

enhanced (or reduced) by stretching (or shrinking) of the vortex tube. As we
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saw in (1.13), helicity conservation is equivalent to the invariance of the linking

number. Because of the invariance of the linking number, the vortex shrinking

is restricted as in Figure 1.2(b). This topological constraint is linked to the

suppression of the energy cascade due to helicity conservation.

(E) Cascade suppression. Between the velocity and vorticity vectors, u and

ω, we have the Pythagorean identity as

(u · ω)2

|u|2|ω|2
+

(u× ω)2

|u|2|ω|2
= 1. (1.14)

This relationship implies that in a flow with a larger |u ·ω|, |u×ω| is relatively

smaller. Since u × ω represents part of the nonlinear interaction in (1.3) and

(1.6), in a flow with a large |u · ω|, the energy cascade due to the nonlinear

interaction may be suppressed. With this expectation, the role of helicity in

turbulence cascade has been studied for a long time. Through these classical

studies, it was shown that the energy dissipation can be locally suppressed in

a flow region where the helicity is relatively strong, but with several reserva-

tions [Rogers & Moin, 1987]. It was also suggested that the energy cascade can

be suppressed in helical turbulence. However, such a helicity effect on energy-

cascade suppression cannot be retained. The effect ceases once the helicity

itself starts cascading to smaller scales [André & Lesieure, 1977]. In order for

the helicity effect to be retained in turbulence, helicity has to be sustained by

some mechanisms that provide turbulence with helicity. Considering such helic-

ity generation mechanisms, we understand importance of treating the helicity

effect in inhomogeneous turbulence such as the case of rotating turbulence, the

case with the helicity externally injected into turbulence, etc.
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1.3. Theoretical analysis of helicity ef-

fects in inhomogeneous turbulence

In the previous section, we briefly reviewed how helicity is defined and what

kind of properties it possesses. In this section, we present how to address the

problem of the helicity effects in inhomogeneous turbulence, and discuss how

the turbulent transport might be altered by the presence of helicity. This will

be done with the aid of a statistical theoretical analysis of inhomogeneous

turbulence.

1.3.1. Mean- and fluctuation-fields equations

We consider a system rotating with a constant angular velocity ωF. We adopt

the Reynolds decomposition of a field f as

f = F + f ′, F = 〈f〉 (1.15)

with

f = (u,ω, p), (1.16a)

F = (U,Ω, P ), (1.16b)

f = (u′,ω′, p′), (1.16c)

where u is the velocity, ω(= ∇ × u) the vorticity, p the pressure (scaled by

a reference density), and 〈· · ·〉 denotes the ensemble averaging. Under this de-

composition, the equations governing the mean velocity U of an incompressible
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fluid are

(
∂

∂t
+U · ∇

)

U = U× 2ωF −∇P −∇ ·R+ ν∇2U (1.17)

and the solenoidal condition

∇ ·U = 0, (1.18)

where P is the mean pressure normalized by the density. The mean vorticity

Ω(= ∇×U) is subject to

∂Ω

∂t
= ∇× [U× (Ω+ 2ωF)− ν∇×Ω] +∇×VM, (1.19)

∇ ·Ω = 0. (1.20)

In (1.17) and (1.19), the Reynolds stress R = {Rij} and the ponderomotive

or vortexmotive force VM are defined by

Rij = 〈u′iu
′

j〉, (1.21)

VM = 〈u′ × ω′〉, (1.22)

respectively. They represent the sole direct effects of the fluctuations to the

mean fields.

The velocity associated with the rotation with the angular velocity ωF is

u = ωF × x. Taking a curl operation, we have

ω = ∇× u

= ∇× (ωF × x) = ωF(∇ · x)−ωF = 2ωF. (1.23)
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This shows that the system rotation with the angular velocity ωF is locally

equivalent to the vorticity of 2ωF. We utilize this relationship. Thanks to this

local equivalence between the rotation and vorticity, by considering the helicity

effect in the turbulence correlations in a rotating frame, we selectively extract

the effect of mean vorticity Ω(= ∇ × U) coupled with the helicity using a

lower-order calculation.

1.3.2. Statistical analytical theory for inhomo-

geneous turbulence

In the context of turbulent transport, one of the main aims of statistical an-

alytical theory of turbulence is to obtain the expressions for the turbulent

correlations in the mean-field equations. Turbulent correlations, such as the

Reynolds stress (1.21) and the vortexmotive force (1.22), determine the ef-

fective transport due to fluctuating motions. The two-scale or multiple-scale

direct-interaction approximation (TS- or MS-DIA): a renormalized perturba-

tion expansion theory for strongly nonlinear turbulence combined with the

multiple-scale analysis, is a theoretical framework that enables us to treat in-

homogeneous turbulence through the derivative expansion. The DIA is one

of the oldest modern turbulence theories constituted of renormalized pertur-

bation theory for homogeneous isotropic turbulence at a very large Reynolds

number [Kraichnan, 1959].4 As for the notion and detail of the multiple-scale

4In the DIA formulation, by introducing the response or Green’s function as well as the

velocity correlation, statistical closure of the system of equations for the propagators (corre-

lation and response functions) is completed. With the aid of the renormalization procedures

for the propagators, summations of the expansion terms are performed partially but up to
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DIA, the reader is referred to Yoshizawa [1984] and Yokoi [2020]. In this sec-

tion, we note only some points which should be born in mind in treating the

helical turbulence with the aid of the multiple-scale DIA analysis.

(A) Multiple-scale analysis. The two- or multiple-scale DIA is a combina-

tion of the DIA and the multiple-scale analysis. We introduce the slow and fast

variables as

X = δxx, ξ = x; T = δtt, τ = t, (1.24)

where δx and δt are scale parameters of the space and time variables, respec-

tively. If δx and δt are small, X and T vary significantly only when the original

variables x and t change considerably. In this sense, X and T are suitable for

describing the large-scale and slow evolution, and are called slow variables. If

the scale parameters δx and δt are small, we have significant scale separations

between the slow and fast variables.

With these two scale variables X, ξ, T , and τ , a field quantity f(x; t) is

divided into slowly and fast varying components as

f(x; t) = F (X;T ) + f ′(X, ξ;T, τ). (1.25)

In the two-scaling formulation, the spatial and temporal derivatives are ex-

the infinite order of expansion. In terms of the field theory, the DIA is a line (propagator)

renormalization theory with truncation of the vertex part at the lowest-order. It is not nec-

essary to invoke this type of elaborate closure scheme for weak nonlinearity turbulence, but

according to numerical simulations, the general behavior of DIA on the energy spectrum,

energy transfer spectrum, microscale length scale, velocity derivative skewness, etc. at low

Reynolds numbers was found to be quite good [Kraichnan, 1964]. As for the detailed jus-

tification arguments on the DIA, the reader is referred to classical textbooks [Leslie, 1973,

McComb, 1990].
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pressed as

∂

∂xi
=

∂

∂ξi
+ δx

∂

∂Xi
,

∂

∂t
=

∂

∂τ
+ δt

∂

∂T
. (1.26)

This means that the large-scale inhomogeneities appear with the scale param-

eters δx and δt. In this sense, the two-scale analysis is a derivative expansion

with respect to the slow-variable inhomogeneities. At this stage, the scale sep-

aration affects the validity of the derivative expansion. For instance, in case

that the gradient-diffusion-type expression, such as the eddy-viscosity repre-

sentation, itself is not appropriate for the starting-order approximation, taking

only lower-order expansion terms in the the derivative expansion should not

give the best approximation.

We apply this two-scale formulation to the fundamental equations of hy-

drodynamics. For the simplicity of the analysis, hereafter we assume that the

space and time scale parameters are the same and put δx = δt = δ. In the case

of an incompressible fluid, the governing equations for the velocity fluctuation

are written as

∂u′i
∂τ

+ Uj
∂u′i
∂ξj

+
∂

∂ξj
u′ju

′

i +
∂p′

∂ξi
− ν∇2

ξu
′

i − 2ǫijℓωFju
′

ℓ

= δ

(

−u′j
∂Ui

∂Xj
−

Du′i
DT

−
∂p′

∂Xi
−

∂

∂Xj

(
u′ju

′

i − 〈u′ju
′

i〉
)
−2ν

∂2u′i
∂Xj∂ξj

)

+ δ2
(
ν∇2

Xu′i
)
, (1.27)

and the solenoidal condition:

∂u′j
∂ξj

+ δ
∂u′j
∂Xj

= 0, (1.28)
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where the mean-flow advective derivative D/DT is defined as

D

DT
=

∂

∂T
+U · ∇X . (1.29)

(B) Fourier representation with respect to the fast variables. We as-

sume that the fluctuation field is homogeneous with respect to the fast space

variable ξ. Then a fluctuation field is Fourier transformed as

f ′(ξ,X; τ, T ) =

∫

f ′(k,X; τ, T ) exp[−ik · (ξ −Uτ)] dk. (1.30)

Here, the factor k · (ξ −Uτ) denotes that the Fourier transform is performed

in the frame traveling with the mean flow U.

Using this Fourier representation, the equations of the velocity fluctuation

in the wave-number space are written as

∂u′i(k; τ)

∂τ
+ νk2u′i(k; τ) + 2ǫijℓωFju

′

ℓ(k; τ)

− ikj

∫∫

δ(k− p− q)u′i(p; τ)u
′

j(q; τ) dpdq

= δ

(

−u′j(k; τ)
∂Ui

∂Xj
−

Du′i(k; τ)

∂TI
−

∂p′

∂XIi

−

∫∫

δ(k− p− q)
∂

∂XIj
u′i(p; τ)u

′

j(q; τ) dpdq+ δ(k)
∂Rji

∂Xj

)

, (1.31)

and the solenoidal condition:

k · u′(k; τ) = δ

(

−i
∂u′j(k; τ)

∂XIj

)

, (1.32)

where

(
∂

∂TI
,∇XI

)

= exp(−ik ·Uτ)

(
∂

∂T
,∇X

)

exp(ik ·Uτ). (1.33)
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The fluctuation fields depend on the slow variables X and T as well as on the

fast variables ξ and τ . However, for the sake of the simplicity of notation, we

suppress denoting X and T and just denote u′(k; τ) in wave-number space.

(C) Scale-parameter expansion. We expand a field quantity f with the

scale parameter δ as

f ′ = f0 + δf ′

1 + δ2f ′

2 + · · · =
∑

n

δnf ′

n. (1.34)

Substituting (1.34) into the velocity fluctuation equation (1.31), with elimi-

nating the pressure p′, the lowest or zeroth order velocity equation is given

as

∂u′0i(k; τ)

∂τ
+ νk2u′0i(k; τ) + 2ǫijℓωFju

′

0ℓ(k; τ)

−iMijℓ(k)

∫∫

δ(k − p− q)u′0j(p; τ)u
′

0ℓ(q; τ) dpdq = 0. (1.35)

(D) External-field expansion. As discussed in § 2 helicity is a measure of

the reflectional symmetry. In order to delve into the effects of helicity, here

we consider hydrodynamic turbulence in a system with rotation, which breaks

the reflectional symmetry. The rotation axis gives a particular direction, so the

system with rotation is no longer isotropic. In order to utilize some properties of

isotropic turbulence, we expand a turbulence field with respect to the angular

velocity of rotation ωF = |ωF|. The turbulent velocity field of the n-th order

in the scale parameter δ expansion, u′

n is expanded with ωF as

u′

n =

∞∑

m=0

ωm
F u′

nm. (1.36)
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Specifically, the lowest-order field u00 is called the basic field and denoted as

u′

B. The equation for u′

B is written as

∂u′Bi(k; τ)

∂τ
+ νk2u′Bi(k; τ)

−iMijℓ(k)

∫∫

δ(k − p− q)u′Bj(p; τ)u
′

Bℓ(q; τ) dpdq = 0, (1.37)

which is exactly the same as that for the homogeneous isotropic turbulence.

We introduce the Green’s function associated with the basic-field equation,

G′

ij(k; τ, τ
′). The equation of G′

ij(k; τ, τ
′) is defined by

∂G′

ij(k; τ, τ
′)

∂τ
+ νk2G′

ij(k; τ, τ
′)

−2iMiℓm(k)

∫∫

δ(k − p− q)u′Bℓ(p; τ)G
′

mj(q; τ, τ
′) dpdq

= Dij(k)δ(τ − τ ′). (1.38)

Reflecting the properties of the basic-field equation (1.37), the Green’s function

equation (1.38) is the same as the counterpart for the homogeneous isotropic

turbulence.

The first-order equation is given as

∂u′1i(k; τ)

∂τ
+ νk2u′1i(k; τ)

−2iMijℓ(k)

∫∫

δ(k − p− q)u′Bj(p; τ)u
′

S1ℓ(q; τ) dpdq+ 2ǫijℓωFju
′

Bℓ(k; τ)

= −Dim(k)u′Bℓ

∂Um

∂Xℓ
−Diℓ(k)

Du′Bℓ(k; τ)

DTI

+2Miℓm(k)

∫∫

δ(k− p− q)
qm
q2

u′Bj(p; τ)
∂u′Bn

∂XIn
(q; τ) dpdq

+Dip(k)Mℓmnp(k)

∫∫

δ(k− p− q)
∂

∂XIn
u′Bℓ(p; τ)u

′

Bm(q; τ) dpdq (1.39)

22



with the solenoidal condition based on (1.28):

u′

1(k; τ) = u′

S1(k; τ) − i
k

k2
∂u′Bℓ(k; τ)

∂XIℓ
, (1.40)

where u′

S1 is the first-order solenoidal velocity satisfying

∇ · u′

S1(k; τ) = 0. (1.41)

We see from (1.39) that all the large-scale inhomogeneity effects enter the

right-hand side (r.h.s.) with a scale parameter δ originated from the r.h.s. of

(1.31). On the other hand, the left-hand side (l.h.s.) of (1.39) is in the same form

as the counterpart in the u′

B equation (1.37). By treating the r.h.s. of (1.39)

as the force terms, we formally solve u′

S1 in terms of the Green’s function G

defined by (1.38). Utilizing the expressions of u′

B, u
′

S1, etc., we calculate the

turbulent correlations with the aid of the DIA.

(E) Basic field with broken mirror-symmetry. In order for the helicity

effects to work, the helicity has to be supplied to the turbulence. As will be

discussed in § 4, system rotation coupled with some inhomogeneity provides one

of such supply mechanisms. Since the helicity is a measure of the broken mirror-

symmetry, we are required to properly capture this breakage of symmetry in

the theoretical formulation.

In the standard two-scale analysis, the basic field u′

B is assumed to be

homogeneous and isotropic. In order to take the helicity effects into account,

we assume that the basic field is homogeneous and isotropic but non-mirror-

symmetric in this work.

Firstly, we assume a generic expression for the correlation of the basic veloc-
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ity field in the configuration space. In homogeneous turbulence the statistical

properties do not depend on where the origin is located but are determined

only by the relative position r = x′ − x. Then the two-point two-time velocity

correlation is written as

R̃ij(r; t, t
′) = 〈u′i(x; t)u

′

j(x
′; t′)〉 = 〈u′i(0; t)u

′

j(r; t
′)〉. (1.42)

The general forms of the correlation tensors for various geometries have been

derived in Robertson [1940] and Chandrasekhar [1950]. The generic expression

for the isotropic and homogeneous R̃ij can be obtained as follows [Lesieur,

2008]. From the two-point two-time correlation R̃ij and two arbitrary fixed

vector a and b, we construct a quantity aiR̃ij(r; t, t
′)bj which is a scalar and

consequently isotropic. This scalar quantity should be invariant under rotation

of r, a, and b. So, it depends only on the lengths, relative angles, and orien-

tations of this set of vectors; r · r, a · a, b · b, r · a, r · b, a · b, and r · (a× b).

Hence, we have

aiR̃ij(r; t, t
′)bj = A(r; t, t′)a·b+B(r; t, t′)(r·a)(r·b)+C(r; t, t′)r·(a×b). (1.43)

If we choose a and b as the unit vectors in the i and j directions, ei and ej,

we obtain

R̃ij(r; t, t
′) = A(r; t, t′)δij +B(r; t, t′)rirj + C(r; t, t′)ǫijℓrℓ, (1.44)

or equivalently,

R̃ij = g
(

δij −
rirj
r2

)

+ f
rirj
r2

+ hǫijℓ
rℓ
r

(1.45)

with g = A, f = A + r2B, and h = rC. Here g represents the transverse
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u'(x) u'(x+r)

v'(x) v'(x+r) v'(x)

w'(x+r)

r rr

(a) (b) (c)

Figure 1.3: Velocity correlations. (a) Longitudinal, (b) transverse, and (c) cross

correlations. Here, r is the displacement vector, u′ is the longitudinal component of

the velocity fluctuation along r, v′ and w′ are the transverse components

perpendicular to each other.

velocity correlation, f the longitudinal velocity correlation, and h is the cross

velocity correlation (Figure 1.3). The cross velocity correlation divided by r

with limiting r → 0 is equivalent to the local helicity 〈u′ · ω′〉.

Corresponding to (1.45) in the configuration space, we have an expression

in the wave-number space. The statistical property of the basic field is assumed

to be

〈u′Bi(k,X; τ, T )u′Bj(k
′,X; τ ′, T )〉

δ(k + k′)

= Dij(k)Q(k,X; τ, τ ′, T ) + Πij(k)QC(k,X; τ, τ ′, T )

+
i

2

kℓ
k2

ǫijℓH(k,X; τ, τ ′, T ), (1.46)

where Q is the energy spectral density of the basic field, QC is the compressible

counterpart, and H is the helicity counterpart, Dij(k)(= δij − kikj/k
2) is the

solenoidal projection operator, Πij(k)(= kikj/k
2) is the compressible projec-

tion operator, ǫijℓ is the alternate tensor. In the case of an incompressible fluid,
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(1.46) is reduced to

〈u′Bi(k,X; τ, T )u′Bj(k
′,X; τ ′, T )〉

δ(k + k′)

= Dij(k)Q(k,X; τ, τ ′, T ) +
i

2

kℓ
k2

ǫijℓH(k,X; τ, τ ′, T ). (1.47)

This is the most generic expression of the homogeneous isotropic non-mirror-

symmetric incompressible turbulence [Batchelor, 1953]. At the same time, the

Green’s function G′

ij(k; τ, τ
′) is assumed to be isotropic as

G′

ij(k; τ, τ
′) = Dij(k)G(k; τ, τ ′). (1.48)

As we see (1.51) in the following subsection (§ 1.3.3), the correlation func-

tion in the configuration space can be calculated by the spectral integral of the

spectral function. It follows from (1.47) that the turbulent energy is calculated

as

〈u′

B
2〉/2 = 〈u′Bℓu

′

Bℓ〉/2 =

∫

Q(k; τ, τ) dk, (1.49)

which shows that the H-related part in (1.47) does not contribute to the tur-

bulent energy. On the other hand, the turbulent helicity is calculated as

〈u′

B · ω′

B〉 =

〈

u′Bℓǫℓmn
∂u′Bn

∂xm

〉

=

∫

H(k; τ, τ) dk. (1.50)

It is only the non-mirror-symmetric part of (1.47) that contributes to the tur-

bulent helicity.
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1.3.3. Analytical expressions for the Reynolds

stress and vortexmotive force

The Reynolds stress in the configuration space can be expressed by its wave-

number space counterpart as

Rij = 〈u′i(ξ,X; τ, T )u′j(ξ,X; τ, T )〉 =

∫

Rij(k,X; τ, τ, T ) dk, (1.51)

where the integrand is abbreviated as Rij(k), and is expressed as

Rij(k) =
〈u′i(k; τ)u

′

j(k
′; τ)〉

δ(k + k′)

=
〈u′0i(k; τ)u

′

0j(k
′; τ)〉

δ(k + k′)

+δ

(
〈u′0i(k; τ)u

′

1j(k
′; τ)〉

δ(k + k′)
+

〈u′1i(k; τ)u
′

0j(k
′; τ)〉

δ(k + k′)

)

+O(δ2)

=
〈u′Bi(k; τ)u

′

Bj(k
′; τ)〉

δ(k + k′)
+

〈u′Bi(k; τ)u
′

01j(k
′; τ)〉

δ(k+ k′)
+

〈u′01i(k; τ)u
′

Bj(k
′; τ)〉

δ(k+ k′)

+δ

(

〈u′Bi(k; τ)u
′

10j(k
′; τ)〉

δ(k + k′)
+

〈u′10i(k; τ)u
′

Bj(k
′; τ)〉

δ(k + k′)
+ · · ·

)

+O(δ2) (1.52)

Substituting u′

B(k; τ) with the statistical properties (1.47) and u′

01(k; τ) and

u′

10(k; τ) into (1.52), we obtain the Reynolds stress expression as

Rij =
2

3
Kδij − νTSij + [ΓiΩ∗j + ΓjΩ∗i]D , (1.53)
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where D denotes the deviatoric or traceless part of a tensor: AijD = Aij −

(1/3)Aℓℓδij , S = {Sij} is the mean velocity strain rate defined by

Sij =
∂Ui

∂xj
+

∂Uj

∂xi
−

2

3
∇ ·Uδij , (1.54)

and Ω∗ is the mean absolute vorticity Ω∗ = Ω+ 2ωF. In (1.53) the transport

coefficients νT and Γ are given as

νT =
7

15

∫

dk

∫ t

−∞

dτ1G(k; τ, τ1)Q(k; τ, τ1), (1.55)

Γ =
1

30

∫

k−2dk

∫ t

−∞

dτ1G(k; τ, τ1)∇H(k; τ, τ1). (1.56)

Here, νT (1.55) is the transport coefficient coupled with the mean velocity

strain S in (1.53), and is called the eddy or turbulent viscosity, which is de-

termined by the Green’s function G and the energy spectral function Q. In

the simplest case where the time integral of the Green’s function can be eval-

uated independent of that of the energy spectral function,
∫ t
−∞

G(k; τ, τ1)dτ1

gives the turbulence timescale τ , and the spectral integral of energy spectrum
∫
dkQ(k; τ, τ1) gives the turbulent energyK ∼ u′2 (u′: magnitude of turbulence

velocity). In this case, (1.55) is reduced to

νT ∼ τK ∼ u′ℓ, (1.57)

where ℓ ∼ u′τ is the characteristic length of turbulence. Equation (1.57) cor-

responds to the mixing-length expression for the turbulent viscosity.

On the other hand, Γ (1.56) is the coupling coefficient for the mean absolute

vorticity Ω∗ in (1.53). This Γ is determined by G and the spatial gradient of

the turbulent helicity spectral function, ∇H. Equation (1.56) implies that the
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inhomogeneity of the turbulent helicity is essential for the helicity effect in the

momentum transport. In a similar manner as in (1.57), the simplest expression

for Γ can be written as

Γ ∼ ℓ2τ∇H. (1.58)

This form of Γ; proportional to ∇H instead of H, can be naturally under-

stood by symmetry argument of the Reynolds stress. The Reynolds stress R =

{〈u′iu
′

j〉} is symmetric: Rij → R̂ij = 〈û′iû
′

j〉 = 〈(−u′i)(−u′j)〉 = 〈u′iu
′

j〉 = Rij

with respect to inversion of the coordinate system x → x̂ = −x and has even

parity. The mean (absolute) vorticity is an axial- or pseudo-vector which does

not change its sign under inversion. On the other hand, the turbulent helicity is

a pseudo-scalar which changes its sign H → Ĥ = −H under inversion. As this

consequence, the helicity H (odd parity) itself cannot enter the Reynolds-stress

expression as the proportional coefficient coupled with Ω∗ but the gradient of

helicity, ∇H, which has even parity ∇H → ∇̂Ĥ = (−∇)(−H) = ∇H, can.

Actually, it is this ∇H dependence that was obtained in (1.56).

Note that Γ is a vector and that the direction of Γ is determined by the

spatial distribution of the turbulent helicity H through ∇H. Depending on

the spatial distribution of H, the sign of each component of ΓiΩ∗j + ΓjΩ∗i

in (1.53) can be positive or negative. If its sign is in the opposite sense as

the eddy-viscosity term −νTSij, the Γ- or helicity-related term suppresses the

eddy-viscosity effect. Otherwise, it enhances the eddy-viscosity effect. How-

ever, the sign of the Γ- or helicity-related term is not arbitrarily distributed.

Since the generation of turbulent helicity depends on the mean vorticity and

rotation, it is often expected that the helicity inhomogeneity coupled with the

mean vorticity and rotation, ΓΩ∗ = {ΓiΩ∗j}, shows a certain sign. Detailed

discussions should be done on the basis of the transport equation of turbulent
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helicity ((1.69) with (1.73)-(1.75) and its model (1.78) in § 1.4.2).

The vortexmotive force VM = {VMi} in the mean vorticity equation (1.19)

can be obtained from the Reynolds stress R = {Rij} through the exact rela-

tionship:

VM = −∇ ·R+∇K, (1.59)

whereK(= 〈u′2〉/2) is the turbulent energy. The second orK-related term does

not contribute to the evolution of the mean vorticity Ω since ∇× (∇K) = 0.

Substituting the Reynolds-stress expression (1.53) into (1.59), we have the

expression of the vortexmotive force as

VM = −DΓ(Ω+ 2ωF)− [(Ω + 2ωF) · ∇]Γ− νT∇×Ω (1.60)

with

DΓ = ∇ · Γ. (1.61)

In (1.60), the third or νT-related term represents the destruction of the mean

vorticity Ω due to the eddy viscosity. On the other hand, the first and second

terms related to Γ represent the possible generation or sustainment ofΩ against

the eddy-viscosity effect. We see from (1.60) that the inhomogeneous turbulent

helicity coupled with the mean absolute vorticity (mean vorticity and rotation)

may contribute to the mean-vorticity generation whereas the turbulent energy

does to the mean-vorticity destruction.

From the spectral expression of the Reynolds stress (1.53) with (1.55) and

(1.56), the relative magnitude of the helicity effect to the eddy-viscosity effect

may be written as

(helicity effect)

(eddy-viscosity effect)
=

|νTS|

|ΓΩ∗|
∼

Ω∗

S

|H(k)|

kE(k)
, (1.62)
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where Ω∗ =
√

Ω∗ijΩ∗ij and S =
√

SijSij are the magnitudes of the mean

absolute vorticity and the mean velocity strain, respectively. If the scaling of

the helicity spectrum H(k) is the same as that of the energy E(k), which is

supported by DNSs, the relative helicity |H(k)|/[kE(k)] behaves as ∝ k−1.

This implies that the relative importance of the helicity effect decreases as we

go to the smaller scale. This point should be born in mind when we consider the

application of the helicity effect to subgrid-scale (SGS) modeling of large-eddy

simulations (LESs) with a small filter width ∆.

1.4. Turbulence modeling with helicity

In the previous sections, we showed that the mean velocity and vorticity fields

are subjected to the effects of turbulent helicity through the Reynolds stress

R = {Rij} and the turbulent vortexmotive force VM = {VMi}. From the

practical viewpoint, it is important to construct a turbulence model with in-

corporating the helicity effects. Helical turbulence, in which the velocity and

vorticity fluctuations are (at least partly) aligned with each other, is essentially

three dimensional. At the same time, the helical flow structure often shows a

strong anisotropy at large scales. As a consequence, we have to consider a three-

dimensional huge simulation domain throughout all scales ranging from large

to small scales. This is a very demanding situation for direct numerical simu-

lations (DNSs). With the aid of a turbulence model incorporating the helicity

effect, we can consistently perform numerical analyses of the helical turbulent

flow configuration relevant to astro-, geo-physical, plasma physics, engineering

phenomena. Here, we present an example of such a helicity turbulence model

with emphasis on the basic notion of the modeling.
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1.4.1. Choice of one-point statistical quantities

As was pointed out in § 2, the total amount of helicity, as well as that of energy,

is an inviscid invariant of the system of fluid equations. In this sense, the local

density of helicity, as well as the local density of energy, is a fundamental

quantity that represents the properties of fluid dynamics.

The turbulent energy 〈u′2〉/2(≡ K) represents the local intensity of fluctu-

ating motions. This point is well reflected by the fact that the turbulent energy

determines the turbulent transport such as the eddy viscosity. In contrast to

the turbulent energy, the turbulent helicity 〈u′ · ω′〉(≡ H) represents the left-

and right-handed twist property. In this sense, the turbulent helicity can serve

itself as a measure of the structure of fluctuating motions.

The K − ε model is one of the most used turbulence models in engineering

and scientific fields. In the model, in order to solve both the mean and tur-

bulent fields in a self-consistent manner, equations of the turbulent statistical

quantities, the turbulent energy K = 〈u′2〉/2 and its dissipation rate ε, are si-

multaneously solved with the mean-field equations [Launder & Spalding, 1972,

Rodi, 1993]. The turbulent transport coefficients, such as the eddy viscosity,

eddy diffusivity, etc., are expressed in terms of K and ε. In the sense that the

transport equations are solved with the dynamics of the mean fields, the K−ε

model is much more elaborated in nonlinear and self-consistent treatments of

the mean–turbulence interaction.

In addition to the turbulent energy per mass K and its dissipation rate

ε, here we adopt the turbulent helicity H as one of the turbulent statistical

quantities. These three turbulent statistical quantities are defined as

K = 〈u′2〉/2, (1.63)
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ε = ν

〈
∂u′j
∂xi

∂u′j
∂xi

〉

, (1.64)

H = 〈u′ · ω′〉. (1.65)

In addition, we can adopt the dissipation rate of turbulent helicity, εH :

εH = 2ν

〈
∂u′j
∂xi

∂ω′

j

∂xi

〉

(1.66)

as a turbulent statistical quantity. However, as compared with the model equa-

tion of ε, the counterpart of εH has not been well formulated. So, we do not

adopt εH as a turbulent statistical quantities. As for the modeling of helicity

dissipation-rate equation, see Yokoi [2016].

The expressions of the eddy viscosity νT (1.55) and the helicity-related

transport coefficient Γ (1.56) with the integrals of the spectral and response

functions in the wave-number space are too heavy for a practical use. Using

the above one-point statistical quantities, K, ε, and H, the eddy viscosity νT

and the helicity-related coefficient Γ in the Reynolds stress R (1.53) and the

vortexmotive force VM (1.60) are simplified and modeled as

νT = Cµ
K2

ε
, (1.67)

Γ = Cγ
K4

ε3
∇H, (1.68)

where Cµ and Cγ are model constants. Note that these expressions are written

in terms of the turbulent statistical quantities K, ε, and H with τ ∼ K/ε and

ℓ ∼ K3/2/ε, while the expressions (1.57) and (1.58) are expressed in terms of

the mixing length ℓ and the characteristic timescale τ of the turbulence.
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1.4.2. Helicity turbulence model

The helicity turbulence model is constituted of the mean-velocity equation

(1.17) with the Reynolds stress expression (1.53) accompanied by the transport

coefficients νT (1.55) and Γ (1.56), and the model equations for the three

turbulent statistical quantities, K, ε, and H.

From the fundamental equations, the exact equations of the turbulent en-

ergy and helicity are given as

(
∂

∂t
+U · ∇

)

F = PF − εF +∇ ·TF , (1.69)

where F denotes the turbulent energyK or turbulent helicityH as F = (K,H).

In Eq. (1.69), PF , εF , and TF are the production rate, dissipation rate, and

transport rate flux of F , respectively. They are defined by

PK = −
〈
u′ℓu

′

m

〉 ∂Um

∂xℓ
, (1.70)

εK = ν

〈
∂u′m
∂xℓ

∂u′m
∂xℓ

〉

≡ ε, (1.71)

TK = −
〈
p′u′

〉
−

〈
1

2
u′2u′

〉

+ ν∇

(
1

2

〈
u′2
〉
)

, (1.72)

PH = −
〈
u′mu′ℓ

〉 ∂Ωm

∂xℓ
+Ωℓ

∂

∂xm

〈
u′mu′ℓ

〉
, (1.73)

εH = 2ν

〈
∂u′m
∂xℓ

∂ω′

m

∂xℓ

〉

, (1.74)

TH = −
〈
p′ω′

〉
+

1

2

〈
u′2ω′

〉
−
〈
(u′ · ω′)u′

〉
+2ωF · 〈u

′u′〉+ν∇
〈
u′ · ω′

〉
, (1.75)

where [2ωF · 〈u′u′〉]ℓ = 2ωFm 〈u′mu′ℓ〉.

From the exact equation (1.69) with (1.70)-(1.75), the model equations of
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K, ε, and H may be given as

(
∂

∂t
+U · ∇

)

K = PK − ε+∇ ·

(
νT
σK

∇K

)

, (1.76)

(
∂

∂t
+U · ∇

)

ε = Cε1
ε

K
PK − Cε2

ε

K
ε+∇ ·

(
νT
σε

∇ε

)

, (1.77)

(
∂

∂t
+U · ∇

)

H = PH − εH +∇ ·

(

2ωFK +
νT
σH

∇H

)

. (1.78)

Here, σK , σε, σH are the turbulent Prandtl numbers for the energy, dissipation

rate, and helicity, Cε1, Cε2 and CH are the model constants related to the

energy and helicity dissipation rates.

For εH in the r.h.s. of (1.78), we adopt an algebraic model as

εH = CH
ε

K
H. (1.79)

Alternatively, we can construct the transport equation of the helicity dis-

sipation rate εH and solve it as well as (1.76)-(1.78) without resorting to the

algebraic model (1.79). We assume that, like a passive scalar, the helicity is

determined by the scale k, energy and helicity transfer rates, ε and εH . The

spectra in the inertial range are assumed to be

σK(k,x; t)

ε
= σK0ε

−1/3k−11/3, (1.80)

σH(k,x; t)

εH
= σH0ε

−1/3k−11/3, (1.81)

where σK0 is the Kolmogorov constant and σH0 is the counterpart for helicity.

With the aid of TS-DIA, up to the lowest-order analysis, we obtain the alge-

braic relation among H, ε, εH , and the size of the largest energy-containing
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eddies ℓC as (1.79). This corresponds to the estimate of the turbulent helic-

ity dissipation rate εH in HIT. If we proceed to the first-order analysis, the

equation of the helicity dissipation rate εH is obtained as

DεH
Dt

= CεH1
εH
K

PK − CεH2
εH
K

ε+ CεH3
εH
H

PH − CεH4
εH
H

εH , (1.82)

where the model constants are theoretically estimated as

CεH1 = 0.36, CεH2 = 0.49, CεH3 = CεH4 = 1.1. (1.83)

Reflecting the assumption that the helicity spectrum depends both ε and εH

as (1.81), the εH equation depends not only PH and εH but also on PK and ε.

For the details of the derivation of the model, see Yokoi [2016].

Since the validity of the εH equation has not been numerically examined

yet, hereafter we just adopt (1.78) with the algebraic model (1.79).5

In the equations of the mean-flow energy and helicity, U2/2 and U · Ω,

we have exactly the same terms but the opposite signs to PK (1.70) and PH

(1.73). This means that the sink (or source) of the mean-field energy and

helicity work as the source (or sink) of the turbulent counterparts. In this

sense, the production terms PK and PH represent the cascades from the mean-

field energy and helicity to the turbulent counterparts. We see from (1.70)

and (1.73) that inhomogeneous mean fields coupled with the Reynolds stress

cause such cascades and contribute to production of the turbulent energy and

5However, it should be noted that, in some flow configurations, the algebraic model results

in discrepancy. For instance, in DNSs of the Ekman boundary layer, the spatial distribution

of the turbulent helicity H shows a sign reversal at some hight, while the dissipation rate of

the turbulent helicity εH does not vanish there [Deusebio & Lindborg, 2014].
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helicity.

As we see in the third or σ-related terms of the model equations (1.76)-

(1.78), the transport rate terms such as TK , TH , etc. are modeled with the

gradient diffusion approximations. On the other hand, the 2ωFK term in (1.78)

represents the turbulent helicity generation arising from the inhomogeneity

along the rotation:

∇ · (2ωFK) = (2ωF · ∇)K. (1.84)

This term is expected to play a crucial role in turbulent helicity generation in

geophysical and astrophysical flows, where rotation and stratification are key

ingredients. For instance, in the case of typhoon and hurricane, the rotation

ωF coupled with the vertical inhomogeneity of flow may contribute to the

turbulent helicity generation. By contrast, in the case of tornado, the system

rotation ωF will not work, but the mean relative vorticity coupled with the

inhomogeneous Reynolds stress in the second term of PH (1.73) may contribute

to the generation of turbulent helicity. Possible applications to some geo- and

astro-physical flows will be discussed in § 1.6.4

In the absence of the turbulent helicity (H = 0), this three-equation (K −

ε−H) model should be reduced to the standard two-equation (K − ε) model.

So, the model constant related to the K−ε model should be retained the same

as the ones in the standard K − ε model as

Cµ = 0.09, σK = 1.0, Cε1 = 1.4, Cε2 = 1.9, σε = 1.3. (1.85)

Note that the K − ε model with the fixed constants has been successfully

applied to many two- and three-dimensional wall boundary layers, duct flows,

free shear flows, recirculating flows, confined flows, and jets. A useful account
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of model and model constants can be seen in Launder & Spalding [1972], Rodi

[1993]. In this sense, the model constants (1.85) in theK−εmodel has been well

optimized and should be fixed as far as possible. It is known that a 5% change

in Cε1 or Cε2 results in 20% change of the spreading rate of a jet [Rodi, 1993].

As will be discussed later in § 1.5.3, without the helicity effect, a considerable

reduction of Cµ = 0.09 → 0.001 is required for a practical application of the

standard K − ε model to a swirling pipe flow. However, there is no firm basis

for this ad hoc treatment.

For the rest of the model constants which are intrinsic to the K − ε −H

model, they should be determined through the practical applications of the

present helicity model to helical turbulent flows such as swirling flows.

Utilizing the notion of the helicity effect, we can construct a set of SGS

turbulence model for large-eddy simulations (LESs). In the LESs, we apply a

filter to a field quantity f to divide it into the grid-scale (GS) and subgrid-

scale (SGS) components, f and f ′′. In the simulation, the large-scale or GS

motions (large eddies) are solved, whereas the small-scale or SGS motions are

modeled (SGS modeling). The Smagorinsky model is the most commonly used

SGS model. In the model, the SGS viscosity νS appearing in the GS equation

is expressed in terms of the GS velocity strain S(=
√

S
2
ij/2) and the filter

width ∆ as νS = (CS∆)2S (S ij: GS rate-of-strain tensor, CS: the Smagorin-

sky constant). As this expression implies, the Smagorinsky model is the SGS

counterpart of the mixing-length model (Note that ∆ is the largest scale of

the unresolved or SGS motions.). This simplicity has made the Smagorinsky

model be commonly used in various types of turbulent flows. However, there

are several deficiencies in the Smagorinsky model. One of such deficiencies is

need for constant adjustment. The Smagorinsky constant CS has to be adjusted
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from flow to flow: CS = 0.18 for the isotropic turbulence, 0.15 for mixing layer

turbulence, 0.10 for wall turbulence. This means that the Smagorinsky model

with model constant CS = 1.8, optimized for the homogeneous isotropic turbu-

lence, results in more than three times ((1.8/1.0)2 = 3.24) too dissipative if it

is applied to the near wall turbulence where the streamwise vorticity structures

are ubiquitously observed.

Since the streamwise vorticity strongly implies the local presence of tur-

bulent helicity, it is expected that the turbulent helicity plays an important

role for reducing the effective viscosity in shear turbulence such as the mixing

layer and wall turbulence. In the model, the effects of turbulence structure

represented by the streamwise vorticity are incorporated into the SGS model

through the SGS helicity. The problem of the overestimate of the SGS viscos-

ity in the presence of the subgrid-scale (SGS) shear structure including the

streamwise vorticity is alleviated by the implementation of the SGS helicity ef-

fect even in the framework of classical Smagorinsky model [Yokoi & Yoshizawa,

2017].

1.5. Application to swirling flow

1.5.1. Swirling flows

The helicity turbulence model is constituted of the mean velocity equation and

the turbulent field equations, where the Reynolds stress is given by (1.53) with

the turbulent viscosity νT and helicity-related coefficient Γ expressed as (1.67)

and (1.68), respectively. The model equations of the turbulent statistical quan-

tities are (1.76) for the turbulent energy K, (1.77) for the energy dissipation
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rate ε, and (1.78) for the turbulent helicity H with an algebraic model for the

helicity dissipation rate εH (1.79).

We apply the present helicity model to turbulent swirling flows. Firstly, we

summarize the characteristic properties of swirling flow. Swirling flow consists

of the main or axial flow in the mainstream or axial direction and the swirl or

circumferential flow around the axis. This configuration is so simple that the

swirling flow is ubiquitously observed in the scientific and engineering commu-

nities. In the engineering field, swirling flow is often utilized in several devices

including swirling jet nozzle, combustion fuel gas injection chamber, etc. In the

scientific field, swirling flows are typically observed in tornado and cyclone. In

these geophysical flows, rotating flows are often accompanied by ascending

and/or descending flows (Figure 1.4). These helical flow structures are consid-

ered to be relevant to the genesis and sustainment of the large-scale coherent

flow structures in tornados and cyclones [Lilly, 1986, Levina and Montgomery,

2014]. In astrophysical flow phenomena, bipolar jets ejected from the central

region of an accretion disk are considered to be helical. These outflows vertical

to the disk are typically accompanied by circumferential flows associated with

the azimuthal rotation in the accretion disk.

One of the prominent features of swirling jets is a dent of the jet-velocity

profile near the central axis. In several types of swirling flows, it is ubiqui-

tously observed that the axial velocity is decelerated in the center region as

compared with the counterpart in the outer core region. The mean axial and

circumferential velocity profiles in turbulent swirling flow in a straight pipe

are schematically depicted in Figure 1.5. In the upstream region near the inlet,

where the swirling motion is injected near the central region, the mean axial

velocity shows a dent profile near the central axis. This dent profile decays
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Figure 1.4: Cyclone swirl accompanied by updraft.
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Figure 1.5: Configuration of swirling flow in a straight pipe.

towards the downstream region and finally becomes a flat profile observed in

the usual turbulent pipe flow without swirl.

The deceleration of axial velocity in swirling flow can be easily understood

in the laminar flow case. We consider cylindrical coordinate system (r, θ, z)

with the swirling axis being in the z direction. For a stationary axisymmetric

swirling flow, we assume that the radial flow ur is negligibly smaller than

the circumferential and axial velocities, uθ and uz. In this case, the radial

momentum balance is achieved by that between the centripetal acceleration
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and the radial pressure gradient as

−
(uθ)

2

r
= −

1

ρ

∂p

∂r
(1.86)

(ρ: fluid density). Integrating (5.1) with respect to r from the axis center r = 0

to a radial position r = r∗ in the outer periphery region, and differentiate with

respect to z, we have

∂p

∂z

∣
∣
∣
∣
r=0

−
∂p

∂z

∣
∣
∣
∣
r=r∗

= −ρ

∫ r∗

0

∂

∂z

(uθ)
2

r
dr. (1.87)

This shows that the axial gradients of pressure are different between the center

(r = 0) and the outer peripheral point (r = r∗), depending on the magnitude

of the circumferential velocity uθ there. On the other hand, the axial balance

of the momentum is given by

uz
∂uz
∂z

= −
1

ρ

∂p

∂z
. (1.88)

With (1.87) this reads

∂

∂z

1

2
(uz)

2

∣
∣
∣
∣
r=0

= −
1

ρ

∂p

∂z

∣
∣
∣
∣
r=0

= −
1

ρ

∂p

∂z

∣
∣
∣
∣
r=r∗

+

∫ r∗

0

∂

∂z

(uθ)
2

r
dr

=
∂

∂z

1

2
(uz)

2

∣
∣
∣
∣
r=r∗

+

∫ r∗

0

∂

∂z

(uθ)
2

r
dr. (1.89)

This means that there is a difference between the center and periphery regions

of the evolution of the axial velocity. The difference depends on the axial evo-

lution of the circumferential velocity profile through the second term in the

final r.h.s. of (1.89). If the swirling motion is driven in the center and inner
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core regions of the pipe at inlet, and decays in the core region, the second or

(uθ)
2-related term in (1.89) is negative:

∫ r∗

0

∂

∂z

(uθ)
2

r
dr < 0. (1.90)

In this case, we have

∂

∂z

1

2
(uz)

2

∣
∣
∣
∣
r=0

<
∂

∂z

1

2
(uz)

2

∣
∣
∣
∣
r=r∗

, (1.91)

which means that in the downstream region, the axial velocity at the center

(r = 0) is relatively small as compared to the velocity in the outer region

(r = r∗), resulting in a dent profile in the central region. On the other hand, if

the swirling motion is driven in the outer periphery region, in the main portion

of the flow except for the near wall, the swirling velocity will increase along

the axis. Then the second term in the final line of (1.89) is positive. In this

case, the axial velocity at the center should be larger than the counterpart in

the outer region, leading to the acceleration of the axial velocity in the center

region. This actually occurs in the case of axially rotating pipe flow, where the

rotation of the outer boundary pipe wall is the source of swirling motion of

the fluid. This argument clearly shows that the decay of the swirling velocity

along the axial direction is directly connected with the deceleration of the axial

velocity in the center region through the pressure interaction.

The situation in the turbulent swirling flow is much more complicated be-

cause of the presence of the turbulent fluxes. In such a case, proper evaluation

of the Reynolds stresses is of crucial importance for the accurate description

and correct prediction of the swirling flow.
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1.5.2. Characteristics of turbulent swirling flow

Because of its simple geometry, swirling flow in a straight pipe has been in-

tensively investigated using experiments. These experimental studies provided

elaborated data on the mean axial and circumferential velocities and the tur-

bulence statistics in swirls [Kitoh, 1991, Steenbergen, 1995, Hoekstra, Derksen,

& Van Den Akker, 1999, Gupta & Kumar, 2007].

The prominent features of the turbulent swirling flow in a straight pipe are

as follows:

(i) The mean axial flow is decelerated in the central axis region as compared

with the axial flow in the core region (dent at the center). The degree of

the deceleration increases with the swirl intensity (the scaled axial flux

of the angular momentum);

(ii) The swirl intensity decays exponentially with the downstream or axial

distance from a reference point.

Here, the swirl intensity SW is defined by the axial flux of the angular

momentum scaled by the axial flux of the linear momentum as

SW =

∫ a
0 2πr2UθUzdr

πa3U2
m

, (1.92)

where a is the radius of the pipe and Um is the bulk velocity defined by Um =
∫ a
0 2πUzrdr/πa

2.

The above two features are related to each other. The first feature: dent in

the axial velocity at center is schematically depicted in Figure 1.6.

Reversal of axial mean flow occurs in the central axis region for strong swirl

intensity case. This reversal is a very important subject in the engineering

application, since flow direction associated with the combustion, fuel supply,
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Figure 1.6: Mean axial velocity profile with and without swirl.

etc. actually changes at some points of the flow. The condition of axial flow

reversal was investigated in variational analysis with the aid of the concept of

helicity as the constraint of the variational calculus [Yoshizawa, et al., 2001,

Yokoi, et al., 2004]. It was shown theoretically that if the mean-flow helicity is

larger than the critical helicity, which is proportional to the square of the mean

axial momentum flux, the mean axial velocity at the central axis is reversed.

1.5.3. Conventional turbulence model for swirling

flow in a straight pipe

It has been well known that the standard eddy-viscosity-type K − ε model

would poorly reproduce both of features (i) and (ii). The standard K−ε model

is recovered from (1.53) with the third or helicity-related term dropped. The

standard K − ε model applied to turbulent swirling flow in a pipe just gives a

flat mean axial velocity profile, which is observed in the axial velocity profile of

a turbulent pipe flow without swirling motion (Figure 1.6). This is because, in

the presence of fully developed turbulence, the eddy-viscosity effect is so strong
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that no inhomogeneous mean velocity structures are allowed to exist except

for the boundary layer in the vicinity of wall where the viscosity dominates

nonlinearity. In order to alleviate this deficiency of the standard K − ε model

and to reproduce the dent axial velocity profile in the framework of the K − ε

model, some modifications of the model have been proposed in the engineering

field. In this modified K − ε model, the model constant associated with the

r-θ component of the Reynolds stress, Rrθ, was artificially put extremely small

such as Cµ = 0.09 → 0.001. Then, the dent profile of the mean axial velocity

was retained in the model calculation [Kobayashi & Yoda, 1987]. However,

from the requirement of the universality of model constants, which any good

turbulence model should satisfy, this treatment is ad hoc and is not preferable

at all.

1.5.4. Analysis of turbulent swirling flow with

the helicity turbulence model

We apply the present helicity turbulence model (K − ε − H model) to the

turbulent swirling flow in a straight pipe. In the model, in addition to the

mean velocity equation (1.17) with the transport coefficients νT (1.67) and Γ

(1.68), the three transport equations of the turbulent statistical quantities, K

(1.76), ε (1.77), and H (1.78), are simultaneously solved. Then the mean fields

and turbulence fields are self-consistently determined.

In Figure 1.7, we plot the mean axial velocity Uz profile and the decay

of the swirl intensity SW calculated by the K − ε − H model in comparison

with the counterparts by experiments and by the standard K − ε model. As

was referred to in § 1.5.3, the dent profile of the mean axial velocity in the
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Figure 1.7: Radial profile of the mean axial velocity and axial decay of the swirl

intensity. (a) Axial velocity normalized by the bulk velocity Ûz = Uz/UM, and (b)

swirl intensity SW . ×: experiment, −−−: standard K − ε model, −−: helicity

(K − ε−H) model. Redrawn from Yokoi & Yoshizawa [1993].

center region cannot be reproduced at all with the standard K − ε model. In

marked contrast, such a dent profile is naturally reproduced with the present

K − ε −H model without resorting to any artificial adjustment of the model

constants. The exponential decay of the swirl intensity SW is also more properly

reproduced by the helicity (K− ε−H) model than the standard K− ε model.

These results clearly show the relevance of the helicity effect to treating

the flow evolution of turbulent swirling flow. The inhomogeneous turbulent

helicity coupled with the rotation and/or large-scale vorticity (anti-symmetric

component of the mean velocity shear) contributes to balancing the enhanced

transport due to the turbulent energy through the eddy viscosity which is

coupled with the large-scale velocity strain (the symmetric component of the

mean velocity shear).
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1.6. Large-scale flow generation by in-

homogeneous helicity

In the previous section, the importance of helicity effect in the transport sup-

pression was discussed. The turbulent helicity contributes to the dynamic bal-

ance between the transport enhancement and transport suppression. Turbu-

lent helicity contributes to the transport suppression by counter-balancing the

transport enhancement due to turbulent energy through the eddy viscosity.

At the same time, turbulent helicity may contribute to inducing a global flow

structure. In this section, we discuss the role of turbulent helicity in generating

a large-scale flow.

1.6.1. Vortex dynamo

Replacing the vorticity ω by the magnetic field b and the viscosity ν by the

magnetic diffusivity η in the vorticity equation of fluid (1.6), we obtain the

magnetic induction equation as

∂b

∂t
= ∇× (u× b) + η∇2b. (1.93)

The magnetic induction equation (1.93) leads to the possibility of dynamo.

Corresponding to the mean vorticity induction equation (1.19), the induction

equation of the mean magnetic field B is written as

∂B

∂t
= ∇× (U×B− η∇×B) +∇×EM (1.94)
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with the solenoidal condition for B:

∇ ·B = 0, (1.95)

where, EM is the turbulent electromotive force defined by

EM = 〈u′ × b′〉. (1.96)

The mean magnetic induction equation (1.94) leads to the large-scale magnetic

field generation and sustainment through the turbulent electromotive force EM.

In spite of several fundamental difference between (1.6) and (1.93) [Moffatt &

Dormy, 2019], the similarity suggests a possibility of the vortex dynamo; large-

scale vorticity generation and sustainment through the turbulent vortexmotive

force VM = 〈u′ × ω′〉 in the mean vorticity equation. Actually, several studies

have been undertaken on this vortex dynamo problem [Krause & Rüdiger, 1974,

Moiseev, et al., 1983, Chkhetiani & Gvaramadze, 1988, Khomenko, Moiseev &

Tur, 1991, Kitchatinov, Rüdiger & Khomenko, 1994]. Through these studies it

has been recognized that in order to have a large-scale flow generation, we need

some breakage of symmetry in Reynolds stress, such as the anisotropy, com-

pressibility, mean flow, etc. For instance, Elperin and co-workers studied an

effect of mean velocity shear on homogeneous nonhelical turbulence [Elperin,

Kleeorin & Rogachevskii, 2003] and on a large-scale instability for formation

of vortical structure [Elperin, et al., 2007]. Spontaneous large-scale flow pat-

tern formation in shear-flow turbulence was numerically confirmed [Käpylä,

Mitra & Brandenburg, 2009]. These shear-flow effects in nonhelical turbulence

correspond to the anisotropic state of turbulence related to the second-order

nonlinear model of the Reynolds stress. The velocity shear ∇U = {∂Uj/∂xi}

49



is divided into the rate-of-strain tensor part Sij and vorticity tensor part Ωij.

The nonlinear effects concerning Sij and Ωij are expressed by the quadratic

strain- and vorticity-tensor terms, such as SiℓSℓj, SiℓΩℓj, ΩiℓΩℓj. These non-

linear models lead to secondary flows in a duct flow [Speziale, 1991]. Note that

these nonlinear expressions of the Reynolds stress can be derived from the

higher-order O(δ2) calculation in the TSDIA formulation without resorting to

the non-mirror-symmetry [Yoshizawa, 1984, 1993].

In the following, we treat the vortex dynamo problem from the viewpoint

of the inhomogeneous helicity effect [Yokoi & Yoshizawa, 1993, Yokoi & Bran-

denburg, 2016, Kleeorin & Rogachevskii, 2018].

There are some mechanisms that are similar to the presenthelicity effects.

One is the so-called anisotropic kinetic alpha (AKA) effect [Frisch, She, &

Sulem, 1987] and the other is the Λ effect [Rüdiger, 1980, 1989]. The AKA

effect is a large-scale instability for the global flow generation in non-mirro-

symmetric turbulence. In the AKA formulation, the turbulent Reynolds num-

ber is assumed to be small, and the Reynolds stress can be expressed by using

the Taylor expansion with respect to a small and uniform mean velocity. Under

these assumptions, it is shown that the mean velocity evolution is subject to an

anisotropic transport coefficient coupled with the mean velocity shear. As these

assumptions suggest, the AKA effect operates basically only at low-Reynolds-

numbers when the eddy viscosity is negligible in the momentum equation.

This gives marked contrast with the present helicity effect which operates in

the strongly nonlinear turbulence. On the other hand, the Λ effect is a contri-

bution to the Reynolds stress arising from the anisotropy of turbulence. In this

formulation, the expression of the Reynolds stress is assumed to be a linear

combination of the functionals of the angular velocity ωF. The Λ effect is sim-
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ilar to the present helicity effect in that the both effects operate in the strong

turbulence regime. This is strong contrast with the AKA effect. However, the

Reynolds stress expression in Λ effect is given as an Ansatz. In this sense, the

physics that determines the transport coefficients and their validity should be

examined for each case of applications. As for the further descriptions of the

AKA effect and the Λ effect, the reader is referred to Appendix of Yokoi &

Brandenburg [2016].

Substituting the expression of the vortexmotive force VM (1.60) into the

mean vorticity equation (1.19), we have

∂Ω

∂t
= ∇× [U× (Ω + 2ωF)− ν∇×Ω] +∇×VM

= ∇× [U× (Ω + 2ωF)]−∇× [(ν + νT)∇×Ω] + IV. (1.97)

Here, the second term represents the enhanced transport due to turbulence.

The effective viscosity is enhanced from ν to ν + νT due to the eddy viscosity

νT. The third term IV is defined by

IV = ∇× {−DΓ(Ω+ 2ωF)− [(Ω+ 2ωF) · ∇]Γ} , (1.98)

which denotes the possible vorticity induction due to the inhomogeneous he-

licity effect [Γ ∝ ∇H (1.56)]. The sign of IV can be positive or negative. The

sign depends on the spatial distribution of the turbulent helicity, through the

signs of DΓ = ∇2H and (Ω∗ · ∇)Γ, where Ω∗ is the mean absolute vorticity

defined by Ω∗ = Ω + 2ωF. In the case of negative IV, the turbulent helicity

effect works for enhancing the eddy viscosity effect.

At the developing stage of the large-scale vorticity, where |Ω| ≪ |2ωF|, the

51



induction due to the inhomogeneous helicity can be approximated as

IV = ∇× [−2DΓωF − (2ωF · ∇)Γ]

= −2(∇DΓ)× ωF − 2∇× [(ωF · ∇)Γ] . (1.99)

1.6.2. Simple argument on the origin of the flow

generation due to helicity effect

Uncurling the mean vorticity equation (1.97), we obtain

∂U

∂t
= U× (Ω + 2ωF)− (ν + νT)∇×Ω+VM +∇ϕ, (1.100)

where ϕ is a potential field determined by the boundary conditions whose

detail is not argued here. With the turbulent vortexmotive force VM (1.60),

the mean velocity induced by turbulence, δU, may be approximated by time

integration of (1.100) as

δU ∼ −τDΓΩ∗ ∼ −τ(∇2H)Ω∗. (1.101)

This implies that a global flow δU is induced in the presence of inhomogeneous

turbulent helicity represented by the Laplacian of the turbulent helicity ∇2H =

DΓ. The flow is parallel to the mean absolute vorticity Ω∗(= Ω + 2ωF) for

∇2H < 0, and antiparallel for∇2H > 0. Laplacian of a quantity represents how

much the quantity is locally more or less distributed than the surroundings. It

follows from (1.101) that a mean flow δU is generated in the direction parallel

to the mean absolute vorticity Ω∗ where the turbulent helicity is locally more

distributed (∇2H < 0), and antiparallel to Ω∗ where the turbulent helicity is
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Ω∗

δU = − τ (∇2H) Ω∗

∇2H < 0

Figure 1.8: Possible physical origin of the global flow induction due to the

inhomogeneous helicity effect.

less distributed than the surroundings (∇2H > 0). In this sense, this global

flow is induced by the mean absolute vorticity (relative vorticity and rotation)

with consuming the turbulent helicity redundant over that of the surroundings

(Figure 1.8). Since the induced global velocity is parallel (or antiparallel) to the

original mean absolute vorticity Ω∗ for ∇2H < 0 (or ∇2H > 0), a positive (or

negative) mean-field helicity U ·Ω is generated. In this sense, back scattering

of the helicity from smaller to larger scales occurs. Is this an inverse cascade

of the helicity with constant fluxes? What is the values of parameter in what

regime for this phenomenon? These points should be further examined in the

future.

1.6.3. Numerical validation of global flow gen-

eration due to helicity effect

With the aid of the multiple-scale renormalized perturbation expansion method,

the expression of the Reynolds stress was obtained as (1.53). The essential

ingredients of the helicity effect in (1.53) are inhomogeneous turbulent helic-

ity represented by Γ(∝ ∇H) and the antisymmetric part of the mean veloc-

ity shear represented by Ω∗(= ∇ × U + 2ωF). We check the validity of the
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Figure 1.9: Setup of DNSs for the validation of helicity effect. A periodic box

configuration with imposed rotation ωF = (0, ωF, 0) (left), and the spatial

distributions of the imposed turbulent helicity H and its gradient dH/dz (right).

Reynolds-stress expression (1.53) with the aid of direct numerical simulations

(DNSs) of a turbulent flow with inhomogeneous helicity (Yokoi & Brandenburg

2016). For this purpose, we adopt a numerical setup of helical turbulence in a

box in Cartesian coordinate system (x, y, z) with imposed rotation ωF, whose

rotation axis in the y direction:

ωF = (ωFx, ωFy, ωFz) = (0, ωF, 0) (1.102)

as in Figure 1.10. The turbulent helicity H = 〈u′ · ω′〉 is externally imposed

by sinusoidal forcing.

In real geophysical and astrophysical flow phenomena, helicity and its inho-

mogeneity are supplied by the helicity production arising from mean-field in-

homogeneities through the field configuration [see (1.78)] and/or the boundary

conditions [related to the diffusion terms in (1.76) and (1.78)]. For example,

rotation coupled with inhomogeneity such as energy inhomogeneity, density

stratification, asymmetry of the inertial wave propagation, etc. may be the

representative mechanism that produces the turbulent helicity. Here, for the

sake of simplicity of the numerical setup, we adopt the external forcing for the
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mechanism supplying helicity into turbulence.

At the initial state, we do not have any mean or large-scale velocity (U = 0)

at all in our setup. It follows from (1.53), at the early stage of development,

the y-z component of the Reynolds stress, Ryz, is given by

Ryz = 〈u′yu
′

z〉 = η2ωF
∂H

∂z
, (1.103)

where

η = Cητℓ
2 = Cη

K

ε

K3

ε2
(1.104)

(Cη: model constant).

Once the mean flow starts being generated by the helicity effect, the Reynolds

stress Ryz is expressed as

Ryz = 〈u′yu
′

z〉 = −νT
∂Uy

∂z
+ η2ωF

∂H

∂z
. (1.105)

Here we have assumed that the generated mean relative vorticity Ω = ∇×U

is still much smaller than the imposed rotation (|Ω| ≪ 2|ωF|) to be neglected

in the generation term due to the helicity. The first or νT-related term in

(1.105) represents the eddy-viscosity effect. The second or helicity-gradient-

related term in (1.105) represents the large-scale velocity generation due to

inhomogeneous helicity. If the eddy viscosity νT term and the helicity term

are balanced with each other in the statistically stationary state, we have

Ryz = 〈u′yu
′

z〉 ≃ 0. In this case, we have

Uy ≃
η

νT
2ωFH. (1.106)

This implies that, in such a balanced state, a mean flow U is induced in the
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direction of the imposed rotation ωF. The induced flow U is parallel to the

rotation ωF for the positive helicity region (H > 0), and antiparallel for the

negative helicity region (H < 0). Note that inhomogeneity of the turbulent

helicity is indispensable for the large-scale flow to be generated. Actually, no

large-scale flow generation is observed if we impose a uniform turbulent helicity.

In Figure 1.10, we present the temporal evolutions of the large-scale flow

(U) and the turbulent helicity H. The spatial (z) distribution of the contours

of Uy and H are plotted against time. Since the turbulent helicity is externally

imposed by sinusoidal forcing throughout the whole period of evolution, a

stationary sinusoidal pattern (positive H for z > 0 and negative H for z < 0)

is observed (top). On the other hand, we have no large-scale flow (U = 0) at

the initial time (bottom). Due to the inhomogeneous helicity effect, a large-

scale flow starts being generated as time proceeds (early stage) and reaches to

a stationary state (developed stage).

In Figure 1.11, we plot the y-z component of the Reynolds stress, Ryz and

the gradient of turbulent helicity multiplied by the rotation, 2ωF(∂H/∂z), at

the early stage of the evolution (averaged over time from t/τ = 40 to 200). The

spatial profile of Ryz = 〈u′yu
′

z〉 is in good agreement with 2ωF(∂H/∂z). This

suggests that the inhomogeneous helicity coupled with the rotation certainly

works for the large-scale flow generation.

In Figure 1.12, we plot the mean axial velocity Uy and the turbulent helicity

multiplied by the rotation, 2ωFH, at the developed equilibrium stage (averaged

over time from t/τ = 0 to 2000) against z. The spatial profile of the induced

mean axial velocity Uy is in fairly good agreement with that of the turbulent

helicity 2ωFH. This implies that, at the developed equilibrium stage, the bal-

ance between the eddy-viscosity effect νTS = {νTSij} and the inhomogeneous
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〈u΄· ω΄〉

U · ωF

z

z

Figure 1.10: Temporal evolutions of turbulent helicity (top) and mean flow

(bottom) with z dependence. Redrawn from Yokoi & Brandenburg [2016].

Figure 1.11: Reynolds stress and helicity gradient at the early stage of evolution.

The y-z component of the Reynolds stress (top) and the turbulent helicity gradient

term ωF(∇H)z (bottom). Averaged over time from t/τ = 40 to 200. Redrawn from

Yokoi & Brandenburg [2016].
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Figure 1.12: Induced mean velocity and turbulent helicity at the developed stage

of evolution. The induced mean velocity Uy (top) and the turbulent helicity H

(bottom). Averaged over time from t/τ = 0 to 2000. Redrawn from Yokoi &

Brandenburg [2016].

helicity effect ΓΩ∗ = {ΓiΩ∗j} (1.106) is well achieved and maintained.

We see from these results that the eddy-viscosity effect solely is not suffi-

cient at all, and that the inhomogeneous helicity effect should be taken into

account in the analysis of turbulent transport in a system with rotating motion.

The inhomogeneous helicity effects in flow generation and transport sup-

pression were also confirmed by the large-eddy simulations (LESs) of rotating

turbulence with externally imposed localized helicity. In the work, turbulent he-

licity was locally imposed by forcing with and without rotation [Inagaki, Yokoi

& Hamba, 2017]. A global flow generation was observed only in the case both

the turbulent helicity and rotation were simultaneously imposed. Examination

of each component of the Reynolds stress revealed that the counter-balancers

to the eddy viscosity were the Coriolis force term and the pressure diffusion
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term in the Reynolds stress equations. This is natural since rotation ωF ef-

fect can enter the turbulence dynamics only through the Coriolis-force and

fluctuating-pressure terms. This result suggests that improvement of the tur-

bulent helicity model equation (1.78) may be possible by elaborated modeling

of the fluctuating pressure-related terms.

1.6.4. Possible applications in spherical geome-

try

1.6.4.1. Spherical surface

In order to see the physical consequences of the induction due to the inhomoge-

neous helicity, we consider local Cartesian coordinate (x, y, z) on the tangential

spherical surface as in Figure 1.9. Here, x denotes the azimuthal direction, y

the latitudinal polar direction toward the north pole, and z the radial direc-

tion outward normal to the local tangential surface. We consider two limiting

cases. One is the case with the length scales in the horizontal directions (x and

y) being much larger than the normal counterpart (z). The other is the case

with the normal length scale (in the z direction) being much larger than the

horizontal ones (in the x and y directions).

(A) Case with large horizontal scale. If the length scales of the horizontal

directions are much larger than the normal counterpart, the gradient operator

in the local Cartesian coordinate (x, y, z) can be approximated as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

≃

(

0, 0,
∂

∂z

)

. (1.107)
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Figure 1.13: Local Cartesian coordinate (x, y, z).

In this case, the second term in (1.99) vanishes. Then the vorticity induction

due to the inhomogeneous helicity is given by

IV = −2(∇DΓ)× ωF. (1.108)

Since the angular velocity vector ωF in the local Cartesian coordinate is given

in terms of the colatitudinal polar angle θ as

ωF = (ωFx, ωFy, ωFz) = (0, ωF sin θ, ωF cos θ) , (1.109)

(1.108) is expressed as

IV = −2∇(∇ · Γ)× ωF =

(

2
∂Dγ

∂z
ωF sin θ, 0, 0

)

. (1.110)

This implies that the rotation ωF coupled with the inhomogeneous turbulent

helicity may induce a large-scale vorticity in the x or azimuthal direction espe-

cially in the low latitude region (0 ≪ θ < π/2). Once the large-scale vorticity is

60



generated in the azimuthal direction, Ωx, the first term in (1.98) starts working

and gives

IVy ≃ {∇× [−DΓ(Ω+ 2ωF)]}y = −
∂

∂z
(DΓΩx), (1.111)

inducing the latitudinal component of the large-scale vorticity, Ωy. This mech-

anism causes a helical large-scale vortical structure in the low latitude region

at the surface of a rotating stellar and/or planetary object.

(B) Case with large normal scale. If the length scale in the direction

normal to the tangential surface is much larger than the counterparts in the

horizontal directions, the gradient operator is approximated as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)

≃

(
∂

∂x
,
∂

∂y
, 0

)

. (1.112)

In this case, the vector Γ related to the helicity gradient in (1.98) is written as

Γ = (Γx,Γy, 0) ≃

(
∂H

∂x
,
∂H

∂y
, 0

)

. (1.113)

At the early stage of the vorticity generation (|Ω| ≪ |2ωF|), we see from (1.99)

that the helicity contribution to the vorticity induction is given by

IV = ∇× [−2DΓωF − (2ωF · ∇)Γ]

=

(

−2
∂DΓ

∂y
ωF cos θ, 2

∂DΓ

∂x
ωF cos θ,−2

∂DΓ

∂x
ωF sin θ

)

+

(

0, 0, 2ωF sin θ

(
∂2Γx

∂y2
−

∂2Γy

∂x∂y

))

. (1.114)

For the lower latitude region, this is reduced to

IV =

(

0, 0, 2ωF sin θ

(

−
∂DΓ

∂y
+

∂2Γx

∂y2
−

∂2Γy

∂x∂y

))

. (1.115)
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This implies that the rotation vector coupled with the inhomogeneous tur-

bulence helicity induces a large-scale vorticity in the direction normal to the

tangential surface in the lower latitude region. This may contribute to the en-

hancement of the genesis of the cyclone in the near equatorial region [Yokoi &

Yoshizawa, 1993].

1.6.4.2. Angular momentum transport

Equation (1.101) implies that inhomogeneous spatial distribution of turbulent

helicity coupled with the mean vortical motion and/or rotation can induce a

large-scale flow in the direction of the mean vorticity/rotation. This can be

paraphrased that the angular momentum is transported to the domain of flow

acceleration and/or generation due to the inhomogeneous turbulent helicity

effect. Two interesting cases are suggested below.

(A) Stellar angular momentum transport. Stellar and planetary interior

convective motions play key roles in forming and sustaining form and sustain

the stellar and planetary magnetic field by dynamo actions. Recent devel-

opments in helioseismology unraveled flow configurations inside the Sun: the

latitudinal and radial distributions of the solar angular velocity as well as the

basic patterns of the meridional circulation. It has been established that the

solar azimuthal rotation represented by the solar angular velocity is faster in

the near equator and near surface regions [Miesch, 2005].

Although the detailed pattern of the meridional circulation is still an open

problem, the basic pattern of it may be considered as the one depicted in

Figure 1.14(a). In the surface region, the meridional circulation UMC flows

poleward direction while at some depth it returns to equatorward. Then, the
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Figure 1.14: Angular momentum transport in the Sun viewed from the

inhomogeneous helicity effect. (a) Basic pattern of the meridional circulation [UMC:

meridional circulation velocity, ΩMC(= ∇×UMC): Vorticity associated with the

meridional circulation]. (b) The radial variation of the turbulent helicity. (c) The

colatitudinal variation of the turbulent helicity. All figures are schematically

depicted.

mean vorticity associated with the meridional circulation ΩMC(= ∇×UMC),

is in the westward azimuthal direction.

On the other hand, the spatial distribution of the turbulent kinetic helicity

has been obtained using DNSs of the spherical shell domain mimicking the

stellar and planetary convective zones [Duarte, et al., 2016]. Following the nu-

merical results, the radial distribution of the turbulent helicity is schematically

depicted in Figure 1.14(b). At the bottom boundary of the convective zone,

the helicity is null, and near the bottom region it is positive. The positive

helicity decreases with radius, and becomes negative in the shallower domain

of the convective zone. The magnitude of negative helicity decreases as ap-

proaching the surface, and finally becomes null at the surface boundary. This

spatial distribution of helicity is naturally understood with the helicity genera-

tion mechanisms due to the inhomogeneity along the rotation (ωF ·∇)K (1.84)

discussed in § 1.4.2. If a lump of fluid with angular momentum approaches the

outer boundary, it is expanded in the horizontal direction due to impinging.
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Because of the local angular momentum conservation, the rotation of the lump

decreases, leading to a negative swirl motion as compared to that of the ambi-

ents. This is alternatively expressed by the inhomogeneity along the rotation

term.

We apply the inhomogeneous helicity effect on the mean velocity [(1.53)

with (1.58)] to the problem of angular momentum transport inside the Sun.

Let us consider the angular-momentum transport in spherical polar coordinate

system (r, θ, φ). The angular momentum around the rotation axis, L, is defined

by

L = Γr2ωF + ΛrUφ (1.116)

with Λ = sin θ. The transport of L is subject to

∂

∂t
ρL+∇ · (ρFL) = 0. (1.117)

Here ρ is the density and FL is the vector flux of the angular momentum,

expressed as

FLr = LUr + rΛRrφ, (1.118)

FLθ = LUθ + rΛRθφ, (1.119)

where R(= {Rij} = {〈u′iu
′

j〉}) is the Reynolds stress.

In the axisymmetric case (∂/∂φ), the inhomogeneous helicity contribution

to the Reynolds stress can be written as

R
(H)
θφ = +

1

r

∂H

∂θ

(
1

r

∂

∂r
rUθ −

1

r

∂Ur

∂θ

)

, (1.120)

R
(H)
rφ = +

∂H

∂r

(
1

r

∂

∂r
rUθ −

1

r

∂Ur

∂θ

)

. (1.121)
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In the presence of meridional circulation in the poleward direction at the solar

surface, the toroidal mean vorticity is negative in the northern hemisphere as

1

r

∂

∂r
rUθ







< 0 (Northern hemisphere)

> 0 (Southern hemisphere)
(1.122)

On the other hand, the turbulent helicity in the northern hemisphere is ex-

pected to be more negative in the shallow region (except for the vicinity of the

surface) than the deeper region as

∂H

∂r







< 0 (Northern hemisphere)

> 0 (Southern hemisphere)
(1.123)

At the same time, the colatitudinal gradient of turbulent helicity is negative

in both hemispheres except in the vicinity of the equator where the sign of

helicity changes from negative to positive [Figure 1.14(c)]. Then, we expect

1

r

∂H

∂θ







< 0 (Northern hemisphere)

< 0 (Southern hemisphere)
(1.124)

It follows from (1.122)-(1.124) that the helicity contributions to the angular

momentum fluxes are written as

rΛR
(H)
θφ ≃ +Λ

∂H

∂θ

1

r

∂

∂r
rUθ > 0, (1.125)

rΛR
(H)
rφ ≃ +rΛ

∂H

∂r

1

r

∂

∂r
rUθ > 0. (1.126)

Equations (1.125) and (1.126) show that the helicity contributions to the θ-φ

and r-φ components are positive. This means that the helicity effect works
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for accelerating the azimuthal velocity by transporting the angular momen-

tum towards shallower and lower latitude (near equator) region. This is in

agreement with the results of helioseismic observations. Preliminary studies

utilizing direct numerical simulations (DNSs) of a spherical shell mimicking

the solar convective zone shows that the magnitudes of the helicity terms,

|(∇H)Ω| = {|(∂H/∂xi)Ωj|}, with the parameters for the solar interior, are

comparable to those of Rrφ and Rθφ [Miesch, 2017]. This suggests that this in-

homogeneous helicity effect should be further investigated in the solar interior

context.

More intuitively, we can argue the role of inhomogeneous helicity effect on

the angular momentum transport in the Sun as follows. We see from (1.101)

that the mean velocity variation due to the helicity effect is given as

δUMC ∼ −τ(∇2H)ΩMC. (1.127)

Since ∇2H is positive in the shallow region [Figure 10(a)], the variation of the

mean velocity δUMC (1.127) is expected to be antiparallel to the mean vortic-

ity due to the meridional circulation, ΩMC. We see that this inhomogeneous

helicity effect works for the acceleration of the azimuthal angular velocity in

the shallow convective zone, which again matches the helioseismic observation.

(B) Wind acceleration near cyclone eyewall. Another possibly inter-

esting application of the inhomogeneous helicity effect is the wind accelera-

tion in the eyewall formation region of tropical cyclone. It is observationally

known that the double-eyewall structure is formed in the core of a cyclone (Fig-

ure 1.15), and a distinct maximum of the wind speed (tangential velocity of

cyclone) is located at the radial position of each eyewall. Such double-eyewall
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Figure 1.15: Flow configuration of tropical cyclone.

formation and maximum wind speed at the eyewalls have been previously dis-

cussed in terms of the radial propagation of the vortex Rossby wave and its

stagnation at the eyewall formation regions [Montgomery & Kallenbach, 1997,

Huang, Montgomery & Wu, 2012, House, 2010].

Since eyewall regions are related to inhomogeneous helicity generation, it

may be possible to explain such a wind acceleration by the inhomogeneous he-

licity effect. The common configurations of cyclones are upward drafts at inner

and outer eyewalls and dry forced descents at eye (Figure 1.15). The updraft

and its circulated down flow constitute the azimuthal component of the mean

vorticity. At the same time, presence of vertical flows in the cyclone eye region

coupled with the vertical mean vorticity associated with the cyclone wind ve-

locity indicates that a mean-flow helicity U ·Ω is present there. This suggests

that the turbulent helicity must be highly inhomogeneous near eyewall. Such

a strong inhomogeneous mean helicity naturally results in the inhomogeneous

spatial distribution of the turbulent helicity H = 〈u′ · ω′〉. Combination of the

mean azimuthal vorticity and the inhomogeneous helicity near the eyewall may

induce a large-scale flow in the azimuthal direction following (1.101).
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1.7. Summary and conclusion

Helicity contributes to the alteration of flow dynamics and fundamental sta-

tistical properties in turbulence. In contrast to energy, which represents the

intensity properties of fluctuations, helicity represents structural properties of

fluctuations. Incorporation of the helicity effects into turbulence statistical the-

ory is achieved by inclusion of the cross-flow or cross-component correlation

as well as the longitudinal and transverse velocity correlations (1.45). In the

configuration space, the longitudinal and transverse velocity correlations are

linked to the turbulent energy, while the cross correlation is linked to the tur-

bulent helicity. Since helicity is a measure of breakage of mirror-symmetry, its

effects are incorporated into theoretical analysis by taking into account the

non-mirror-symmetric part in the expression of the fluctuation correlations in

the wave-number space [(1.46) and (1.47)].

Turbulent transport is expressed by turbulent fluxes such as the Reynolds

stress in the mean momentum equation and the vortexmotive force in the

mean vorticity equation. In mirror-symmetric case, turbulent transport is de-

termined solely by the intensity of fluctuation. The more intense fluctuation is,

the more effective transport we have. From the viewpoint of turbulence model,

the eddy viscosity represents such an enhanced transport due to turbulence.

The turbulent viscosity is expressed in terms of the turbulent energy and its

timescale. In non-mirror-symmetric case, helicity as well as energy enter the

expressions of turbulent fluxes as the descriptor of turbulent transport.

With the aid of the multiple-scale renormalized perturbation expansion the-

ory, we obtained the analytical expressions for the Reynolds stress and turbu-

lent electromotive force. In these theoretical results, the transport coefficients

are expressed in terms of the spectral correlation functions and response func-
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tion (Green’s function). The eddy viscosity, the transport coefficient coupled

with the symmetric part of the mean velocity shear (mean velocity strain), is

expressed by the spectral and time integral of the energy spectral function and

the Green’s functions (1.55). In a system with lacking reflectional symmetry, in

addition to the eddy viscosity, another transport coefficient coupled with the

antisymmetric part of the mean velocity shear (mean vorticity and rotation)

shows up. The latter transport coefficient is expressed by the inhomogeneity

of the helicity spectral function and the Green’s function (1.56).

On the basis of these analytical results, we construct a turbulence model

with the structural effect incorporated through the turbulent helicity. In order

to construct a self-consistent system of model equations, the mean and turbu-

lence fields should be simultaneously solved. For this purpose, the transport

equations of the turbulent energy K, its dissipation rate ε, and the turbu-

lent helicity H were proposed (K − ε−H model). This model was applied to

swirling flow in a straight pipe. This helicity turbulence model could success-

fully reproduce the main characteristics of the swirling flow: the deceleration

of the mean axial velocity and the exponential decay of the swirl intensity,

which could not be reproduced at all with the standard K − ε model with

the eddy-viscosity representation. This numerical result shows that the eddy

viscosity which enhances the effective transport too much for the swirling flow,

can be successfully counter-balanced by the inhomogeneous helicity effect.

The helicity effect was also validated by using direct numerical simulations

(DNSs) of a rotating triple-periodic symmetrical box with inhomogeneous he-

licity externally imposed by forcing. Starting with no initial mean flow con-

figuration, it was shown that inhomogeneous helicity coupled with rotation

contributes to the induction of a global flow in the direction of the rotation
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vector. It was shown that the Reynolds stress shows a high correlation with the

inhomogeneous helicity at the early stage of flow evolution, where the eddy-

viscosity effect is weak because of the absence of mean velocity strain. Also the

high correlation between the induced mean flow and the local turbulent helicity

at the developed stage confirms the balancing between the eddy viscosity and

inhomogeneous helicity effects. These numerical validations show that, in the

non-mirror-symmetric case, the helicity effect coupled with the mean absolute

vorticity (mean vorticity and rotation) should be considered in addition to the

usual eddy-viscosity effect coupled with the mean velocity strain.

From these theoretical and numerical results, we can summarize the roles

of helicity in fluid turbulent transport. In non-mirror-symmetric system, the

Reynolds stress is schematically expressed as

〈u′u′〉 :=

Eddy viscosity
︷ ︸︸ ︷

−νTS

Helicity effect
︷ ︸︸ ︷

+ΓΩ∗ . (1.128)

Transport: Enhancement Suppression

Flow/Structure: Destruction Generation

Here, for the sake of brevity, the notations for the deviatoric and transposed

component of a tensor are suppressed, := denotes “schematically represents”, S

is the mean velocity strain tensor, Γ ∝ ∇H is the gradient of helicity, andΩ∗(=

Ω+ 2ωF) is the mean absolute vorticity. The eddy viscosity νT is determined

by the turbulent energy and timescale of turbulence, while the helicity-related

transport coefficient Γ is determined by the gradient of helicity, timescale and

length scale of turbulence. It is worth noting that turbulence timescale and

length scale are altered by the presence of strong helicity, rotation, velocity

shear, non-equilibrium effect etc. [Yokoi, Masada & Takiwaki, 2022]. Actually,
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the implication of the strain- and vorticity-tensor effect on the timescale and

length scale of turbulence has been explored in the conventional nonlinear

turbulence modeling studies [Speziale, 1991].

In treating turbulent transport in non-mirror-symmetric turbulence, the he-

licity effects, which represent transport suppression and structure generation,

have to be incorporated into the turbulent fluxes and their model expressions as

well as the turbulent energy effect. In the present helicity effects, the direction

of change in the turbulent transport and global flow generation/destruction

depends on the spatial distribution of the turbulent helicity. In this sense,

spatiotemporal evolution of the turbulent helicity, its production, dissipation,

and transport mechanisms play a crucial role. In the real-world turbulence,

such mechanisms are determined by nonlinear dynamics between the mean

and turbulence fields. A self-consistent approach based on turbulence model-

ing described in § 1.4 is of fundamental importance in exploring global flow

generation mechanisms in nature.

Much more attention should be paid for helicity. In particular, detailed lab-

oratory experiments and in-situ and/or remote observations, numerical calcu-

lations of the spatiotemporal distributions of helicity (kinetic helicity, magnetic

helicity, current helicity, residual helicity, cross helicity, . . . ) are most required

for developing our insights in turbulence and nonlinear flow phenomena.
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